
845

Estimating Visual Saliency Through
Single Image Optimization

Jia Li, Member, IEEE, Yonghong Tian, Senior Member, IEEE, Lingyu Duan, and Tiejun Huang

Abstract—This letter presents a novel approach for visual
saliency estimation through single image optimization. Instead of
directly mapping visual features to saliency values with a unified
model, we treat regional saliency values as the optimization ob-
jective on each single image. By using a quadratic programming
framework, our approach can adaptively optimize the regional
saliency values on each specific image to simultaneously meet
multiple saliency hypotheses on visual rarity, center-bias and
mutual correlation. Experimental results show that our approach
can outperform 14 state-of-the-art approaches on a public image
benchmark.

Index Terms—Quadratic programming, single image optimiza-
tion, visual saliency.

I. INTRODUCTION

V ISUAL saliency is an useful tool to locate the attractive
visual signals in images and videos. By focusing on the

salient contents, images and videos can be analyzed as human
vision system does. Consequently, the analysis results often
demonstrate better capabilities to meet human perception. To
that end, visual saliency estimation is now becoming one of
the hottest yet challenging research area in signal processing,
computer vision and multimedia analysis.
To estimate visual saliency, many approaches have been pro-

posed in the past few decades. Among them, a widely accepted
hypothesis is that visual rarity can work as a good criterion
to quantize saliency. For example, the most famous approach
proposed by Itti et al. [1] tried to estimate image saliency by
fusing the multi-scale center-surround contrasts extracted from
multiple preattentive features. In this manner, unique or rare
image contents can pop-out from their surroundings and be-
come salient. Similarly, Goferman et al. [2] incorporated the
influence of spatial contexts to compute visual saliency. Harel
et al. [3] represented images as undirected graphs whose edges
were weighted by pixel-wise differences. A random walker was
then used to find and pop-out the less-visited nodes (i.e., pixels).
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Chen et al. [4] proposed a Bayesian framework to jointly inte-
grate the traditional low-level cues and the defocus prior from
photographers for image saliency estimation.
Beyond the approaches that mainly extracted visual cues

from the spatial domain, some approaches also tried to esti-
mate image saliency in the transform domain. For example,
Hou and Zhang [5] adopted the Fourier transform to detect
irregular visual signals from the frequency domain. Similarly,
many approaches first learned a visual dictionary consisting
of various basis functions and then project the input signals
onto the subspaces represented by these functions for visual
saliency estimation. A fundamental assumption here is that
certain subspaces may have better capabilities to distinguish
salient targets from background distractors. For example,
Bruce et al. [6] first learned a set of basis functions using
independent component analysis and then estimated visual
saliency through information maximization. Wang et al. [7]
projected image signals onto these subspaces and then adopted
the graph representations to find the salient locations. Yan et al.
[8] proposed to learn a over-complete dictionary to characterize
image patches and visual saliency was then estimated through
matrix decomposition.
Usually, all these approaches can achieve promising perfor-

mance using predefined or learned models that can map the ex-
plicit visual cues (e.g., contrasts and entropy) to saliency values.
However, one drawback of these approaches is that they often
adopt unified models to process various images, while these
saliency hypotheses (e.g., rarity, center-bias and correlation hy-
potheses) may not always hold in different images. For instance,
using the rarity hypothesis can easily detect small salient ob-
jects but may fail when processing images with large salient
objects. Therefore, various saliency hypotheses should be adap-
tively taken into account to obtain the best saliency map on each
specific image.
Toward this end, we propose a novel approach to estimate

visual saliency through single image optimization. Instead of
mapping visual features to saliency values with a unified model,
we treat the saliency values of all regions as the optimization ob-
jective on each single image. In this process, the saliency value
of each region is optimized when considering the influences
of all the other image regions. By using a quadratic program-
ming framework, these saliency values can be adaptively opti-
mized on each image to simultaneously meet several saliency
hypotheses on visual rarity, center-bias and mutual correlation.
Experimental results show that our approach can outperform 14
approaches on a public image benchmark.
The remainder of this letter is organized as follows. Section II

describes the details of the proposed approach. In Section III,
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Fig. 1. The system framework of our approach. In our approach, the input
image is first segmented into compact regions. After that, the correlations
between regions are computed as the similarity between their visual appear-
ance. Finally, the saliency values of all regions are simultaneously optimized
to best meet the proposed hypotheses on visual rarity, center-bias and mutual
correlation.

we conduct experiments to validate the effectiveness of our ap-
proach. Finally, the letter is concluded in Section IV.

II. OUR APPROACH

To estimate visual saliency, we first segment an image
into regions using the algorithm [9], denoted as .
As shown in Fig. 1, these compact regions can well preserve
object shapes and are much easier to obtain than the perfectly
segmented objects. Moreover, such compact segmentation
avoid the ambiguities around object boundaries which often
arise when simply partitioning images into macro blocks with
fixed sizes.
Given , visual saliency can be computed as a kind of

regional rarity. That is, high saliency values should be assigned
to unique or rare regions. To quantize such rarity, we have to
derive the mutual correlations between all regions. Inspired by
the idea that visually similar regions should have strong corre-
lations, we represent with its visual appearance , which is
a column vector computed by averaging all the pixel-wise in-
tensity, red/green opponency and blue-yellow opponency in .
Here we use the approaches in [10] to compute the red-green
opponency and blue-yellow opponency for pixel :

(1)

where , , are the red, green and blue values of pixel .
Similar to [10], we set if

to avoid large fluctuations at low luminance.
After extracting , the correlation between and
can be computed as a kind of visual similarity:

(2)

From the definition in (2), we can see that the mutual corre-
lation between any two image regions is symmetric (i.e.,

). Note that the spatial distance between and is not
considered in (2) to avoid the boundary effect. Usually, severe
boundary effect may arise when incorporating the influence of
such spatial distance. In this case, regions far from image cen-
ters will have relatively weak correlations with all the other re-
gions. Consequently, high saliency values could be mistakenly
assigned to the regions around image corners.
After computing the mutual correlations, we can now esti-

mate the saliency value for each region. Instead of using amodel
that directly maps regional visual features to saliency values, we
simultaneously optimize the saliency values of all regions in a
specific image that can best meet several saliency hypotheses,
including:
• Rarity hypothesis: an image region, which only has weak
correlations (i.e., low visual similarities) with all the other
regions, should probably be salient;

• Center-bias hypothesis: an image region, which appears
near to image center, should probably be salient.

• Correlation hypothesis: two tightly correlated image re-
gions should have similar saliency values if they are near
to each other;

Following these hypotheses, we can formulate the problem
of visual saliency estimation into an optimization framework.
In this framework, saliency values of various regions can be
optimized simultaneously to best meet the hypotheses. Let be
the saliency value of , we can optimize by solving:

(3)

where is half the image diagonal length. and are the
distances from to and image center, respectively. and
are two weights to balance the influences of these terms,

which can be automatically estimated as:

(4)

From (3), we can see that high penalties will arise if: 1) as-
signing high saliency to a region that is tightly related to all
the other regions(the first term); 2) allocating high saliency to
regions near to image boundaries (the second term) or 3) as-
signing different saliency values to tightly related regions that
are near to each other (the third term). Note that the optimization
problem in (3) only has quadratic and linear terms with linear
constraints, thus we can solve it with the active-set algorithm
by iteratively searching for the active constraints and solving
the equality problems with Lagrange multipliers.
After obtaining the saliency values for all image regions, an-

other problem is how to extract the salient objects. As shown in
Fig. 2, we adopt two intelligent thresholds to extract the salient



847

Fig. 2. Salient object extraction using two intelligent thresholds. These two
thresholds are first calculated to selected reliable foreground and background
regions, while other regions are then classified as foreground or background
using the mutual correlations across regions. (a) images; (b) ground-truth salient
objects; (c) reliable foreground regions; (d) reliable background regions; (e) ex-
tracted salient objects.

objects. First, we compute these two thresholds to select the
most reliable foreground and background regions:

(5)

After that, regions with saliency values higher than and
lower than are selected as reliable foreground and back-
ground regions, respectively. In particular, we directly select
the top 5% regions as reliable foreground regions if

.
Given the reliable foreground and background regions, we

then classify other regions according to their mutual correla-
tions. Let and be the indices of the reliable fore-
ground and background regions, we classify with saliency
value as a foreground region if:

(6)

Otherwise, will be classified as a background region.
Different from [11] and [12] which directly binarize saliency
maps using one threshold like , we also select the reliable
background regions using and such background regions
can help to recover the foreground regions whose saliency
values are in . In this manner, we can ensure
that most salient regions can pop-out after the binarization,
especially when the salient objects are very large (as shown in
Fig. 2).

III. EXPERIMENTAL RESULTS

In this section, we conduct several experiments to validate
the effectiveness of our approach. In the experiments, we adopt
the image saliency benchmark proposed by Achanta et al. [11].
This benchmark contains 1,000 images with obvious salient
objects. In each image, the salient objects are manually labeled
with accurate masks. This benchmark has been used by many
approaches such as [11]–[15] for evaluating visual saliency
models.

On this benchmark, our approach is compared with 14
state-of-the-art approaches. These approaches can be roughly
categorized into three groups, including:
• Spatial group: This group contains 7 approaches that de-
tect salient locations in the spatial domain, including CS
[1], CA [2], GB [3], SR [5], RARE [16], RAND [14] and
HC [13];

• Dictionary group: this group consists of 3 approaches that
learn visual dictionaries to assist visual saliency estima-
tion, including AIM [6], SER [7] and ICL [17];

• Region group: this group contains 4 approaches that seg-
ment images into regions for visual saliency estimation,
including FT [11], RC [13], CSP [15] and SF [12].

In the comparison, all approaches are evaluated from two
perspectives. First, we use the Area Under the ROC Curve
(AUC) to evaluate the performance of estimating saliency
values1. Second, we use Recall, Precision and FScore to
evaluate the performance of extracting salient objects. In the
comparison, all the other saliency maps are binarized using the
intelligent thresholds proposed in [12] and FScore is calculated
by equally consider Recall and Precision:

(7)

When calculate FScore, we equally treat Recall and Pre-
cision instead of emphasizing only Precision as in [11]–[13].
The reason is that for some applications such as mobile search
and video retargeting, Recall is as important as Precision since
these applications often rely on the features extracted from ob-
ject boundaries. When only emphasizing Precision, some ob-
ject parts will be wrongly suppressed and the “fake” boundaries
will mislead these applications.
The performance of these approaches are shown in Table I

and some representative examples are illustrated in Fig. 3. From
Table I, we can see that our FScore andAUC are always among
the best. In particular, our approach achieves the highest FS-
core in extracting salient objects, while the performance AUC
is comparable with RC and SF in estimating saliency values. Ac-
tually, the main advantage of our approach is that it can simulta-
neously optimizes the saliency values of all regions in a specific
image. In the optimization, the saliency value of a specific re-
gion is computed when the influences of all the other regions are
taken into account. In this manner, the estimated saliency map
can adaptively meet all the three saliency hypotheses on visual
rarity, center-bias and mutual correlation.
Moreover, we can see that the framework of our approach is

flexible. Suppose that we have specific prior knowledge on the
salient targets (e.g., the salient targets that may appear in the
image), we can simply add new penalty terms in (3) to bring in
such prior knowledge to improve the estimated saliency maps.
Moreover, the estimated saliency maps have the same size as the
input image. As shown in Fig. 3, the boundaries of the salient
objects can be well maintained. This is an useful characteristic
since many object analysis techniques need to extract features
from boundaries.

1The code for calculating AUC can be found at http://jdl.ac.cn/user/jiali/cal-
cAUCjudd.m.
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Fig. 3. Representative saliency maps of our approach and the other 14 approaches. Each saliency map is normalized into to get an intuitive view.

TABLE I
COMPARISON BETWEEN OUR APPROACH AND OTHER 14 APPROACHES

IV. CONCLUSION

In this letter, we propose an approach that can automatically
pop-out the salient regions without predefining or learning
models to map visual features to saliency values. Given the
region-wise correlations, the saliency values of various regions
can be adaptively optimized on each image to simultane-
ously meet multiple saliency hypotheses such as visual rarity,
center-bias and mutual correlation. Experimental results show
that our approach outperforms 14 state-of-the-art approaches
in extracting the salient objects from images. In the future
work, we will try to improve our approach by bringing in more
saliency hypotheses. Moreover, we will also try to incorporate
some task-dependent factors into the optimization framework
to generate top-down saliency maps.
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